

Project funded by the EUROPEAN UNION

A Location-aware System for Fruit Fly Monitoring and Pest Management Control

OliveFlyNet test site implementation in Attiki, Greece

Costas Pontikakos

Universitat de les Illes Balears

UTB

Project funded by the EUROPEAN UNION

This presentation has been produced with the financial assistance of the European Union under the ENPI CBC Mediterranean Sea Basin Programme. The contents of this presentation are the sole responsibility of AUA/ ARO/ NCARE/ CRA-FRU/ UIB/ UTH and can under no circumstances be regarded as reflecting the position of the European Union or of the Programme's management structures.

The 2007-2013 ENPI CBC Mediterranean Sea Basin Programme is a multilateral Cross-Border Cooperation initiative funded by the European Neighbourhood and Partnership Instrument (ENPI). The Programme objective is to promote the sustainable and harmonious cooperation process at the Mediterranean Basin level by dealing with the common challenges and enhancing its endogenous potential. It finances cooperation projects as a contribution to the economic, social, environmental and cultural development of the Mediterranean region. The following 14 countries participate in the Programme: Cyprus, Egypt, France, Greece, Israel, Italy, Jordan, Lebanon, Malta, Palestine, Portugal, Spain, Syria (participation currently suspended), Tunisia. The Joint Managing Authority (JMA) is the Autonomous Region of Sardinia (Italy). Official Programme languages are Arabic, English and French (www.enpicbcmed.eu).

The European Union is made up of 28 Member States who have decided to gradually link together their know-how, resources and destinies. Together, during a period of enlargement of 50 years, they have built a zone of stability, democracy and sustainable development whilst maintaining cultural diversity, tolerance and individual freedoms. The European Union is committed to sharing its achievements and its values with countries and peoples beyond its borders.

The project FruitFlyNet total budget is 1.662.872,32€ and it is financed, on an amount of 1.496.585,09€ (90 %), by the European Union (ENPI CBC Mediterranean Sea Basin Programme) through the European Neighbourhood and Partnership Instrument.

Editor(s):

Costas Pontikakos, costas_pontikakos@yahoo.co.uk

Introduction

- The implementation stages of Olive Fly Net prototype
- Materials and methods
- Results
- Conclusions

Implementation stages

- Digitization of the orchard
- Monitoring (traps, insect population, remarks, sampling)
- DSS (when, where, how to spray)
- Spraying treatments

act0

Materials and methods

- Orchard digitization
- Protected areas
- Monitoring traps (insect population)
- Monitoring trees (phenological stage)
- Olive Fly DSS for spray
- Month temperatures

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Orchard digitization

Protected areas – Dynamic buffer zones

Obstacle

- For each type of protected area (biological cultivations, domestic areas, playgrounds, hospitals etc) we can set a minimum distance for zero wind speed
- Dynamic buffer zones. Depend on wind speed and direction.
- To avoid spray in protected areas the DSS optimized to handle large number of "protected polygons"

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Monitoring trees

X Tree ID:560	Menu Menu	X Tree ID:560
Remarks		Samples
Remarks entries ID:157	Samples entries ID:13	
👔 Display 🔀 Del 🛛 👍 Ad		
30/9/15 14:04:08		25/10/15 17:01:46
19/8/15 15:41:47	% estimation	18/9/15 14:51:19 3/7/15 19:16:17
Fruit Load	of the fruit	Fruits
	load for each	50
Phenological Stage	LAS tree	Infested Fruits
BBCH		0
79	BBCH guide	BBCH
Nata		72 v
Notes		Notes
		L
handhe	handheid	
Rema	Sampling	

Restart BBCH

× Smart approach Edit A scale used Alive to identify the infestation of phenological development the fruits from larvae stages of the plant 8.Maturity of fruit 81.Begining of fruit colouring. BCH guide Begining of fruit colouring. Accept Yes No handheid BBCH

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Menu

🙀 Olive Fly DSS for spray (LAS)

- DSS A (Automatic counting of insects using photo)
 Not performed (not enough data available)
- DSS A (Semi-automatic trapping)
 Conducted more than 100 times
- DSS B (when to spray)
 - Conducted 20 times (20 trapping dates)
- DSS C (where to spray)
 - The Inverse Distance Weight (IDW) interpolation was used (power=2, Buffer=50m) for infestation risk maps
- DSS D (how to spray)
 - Minimum buffer zone distance for protected areas defined to 20m
- DSS E (spraying action)
 - The <RIGHT> method for locating the trees that are spraying

Methods for locating the sprayed trees

- NEAREST: The nearest tree
- RIGHT: The nearest tree at right
- LEFT: The nearest tree at left
- RIGHT>:The nearest tree at right and forward
- LEFT>:The nearest tree at left and forward
- Visual using Tracking path
- Ground truth

Mobile GIS

FruitFl

 At August and 10 first days of September were high temperatures

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Results

- Olive fly population
- DSS B
- DSS C
- DSS D
- DSS E

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Vive fly population (mobile GIS) - Block

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Project funded by the EUROPEAN UNION

FruitFlv

💥 DSS B mean adults, alive infestation (LAS plot

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Project funded by the EUROPEAN UNION

FruitFly

X Spraying applications performed

Application	Plot	Method of spraying	Method of locating sprayed trees	Type of spraying
B 1	В	Conventional	Right	Real
A1	А	Conventional	Right	Blank
A2	А	LAS	Right	Blank
A3	А	LAS	Right	Blank
(Many)	-	-	-	Simulated

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

X DSS D and E: Spraying (Conventional plot)

Tracking path

Decisions, Locating sprayed trees

During spraying

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

\swarrow Off target spraying (Conventional plot)

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Off target sprayings of each application

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Project funded by the EUROPEAN UNION

FruitFly

Volume of the spraying solution or water applied of each application

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Spraying duration of each application

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Length (distance) of the tracking path of each application

Final Consortium Meeting December 7-10, 2015 Athens - Volos, Hellenic Republic

Conclusions

- In LAS applications less off target sprayings occurred, less spraying solution was used, the duration of the sprayings and the length of tracking paths were less than Conventional applications
- Due to these results the cost of the treatments can be reduced
- The treatment applications are more environmental friendly
- The public health is protected

